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We model the dynamics of the human tear film during relaxation (after a blink) using
lubrication theory and explore the effects of viscosity, surface tension, gravity and
boundary conditions that specify the flux of tear fluid into or out of the domain.
The governing nonlinear partial differential equation is solved on an overset grid
by a method of lines using finite differences in space and an adaptive second-order
backward difference formula solver in time. Our simulations in a two-dimensional
domain are computed in the Overture computational framework. The flow around
the boundary is sensitive to both our choice of flux boundary condition and
the presence of gravity. The simulations recover features seen in one-dimensional
simulations and capture some experimental observations of tear film dynamics around
the lid margins. In some instances, the influx from the lacrimal gland splits with some
fluid going along the upper lid towards the nasal canthus and some travelling around
the temporal canthus and then along the lower lid. Tear supply can also push through
some parts of the black line near the eyelid margins.

1. Introduction
The tear film plays an essential role in the quality of vision and the health of the

eye; when functioning properly, it maintains a critical balance between tear secretion
and loss with each blink. A collection of problems associated with the malfunction
or deficiency of tear film is recognized to be the dry eye syndrome (Lemp 2007).
Symptoms of dry eye include blurred vision, burning, foreign body sensation and
tearing. Schein et al. (1997) estimate that 10–15 % of Americans over the age of 65
have one or more symptoms of dry eye syndrome. Furthermore, Miljanović et al.
(2007) found dry eye to negatively impact daily tasks such as reading and driving.
Thus, a better understanding of the tear film in either healthy or dry eyes could
potentially benefit many people (Johnson & Murphy 2004).

The classical description of the tear film is as a thin three-layer film consisting of
an anterior oily lipid layer, a middle aqueous layer commonly thought of as tears and
a mucus layer. The function of the lipid layer is to decrease the surface tension and
retard evaporation. The mucus is secreted from goblet cells and is the first material
above the epithelial cells. The classical description of the tear film is not accepted
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by all and is still debated today. The modern alternate description of the tear film
structure does not have the mucus layer as distinct and separate (Bron et al. 2004;
Gipson 2004), and it is difficult to experimentally measure an interface between the
mucus and aqueous layer (King-Smith et al. 2004).

The exposed or visible tear film resides on the anterior surface of the eye between
the upper and lower lids. We refer to the corners of the eye as either the nasal
canthus (near the nose) or the temporal canthus. The tear film thickness distribution
has particular characteristics including tear menisci located near the lid margins
where the tear film thickness increases at the upper and lower lids. Mishima et al.
(1966) estimate that 73 % of the exposed tear film volume is located in the upper and
lower menisci. Oft-measured parameters associated with the tear menisci are the tear
meniscus width (TMW), the thickness of the tear film at the eyelid boundary (i.e. in
the direction normal to the eye surface); the tear meniscus height (TMH), the extent
of the tear meniscus along the eye surface; and the tear meniscus radius (TMR;
sometimes called tear meniscus curvature). In the middle of the cornea, the tear film
thickness is much thinner than the TMW. Non-invasive experimental measurements
by King-Smith et al. (2000) found a tear film thickness of 2.7 μm and, similarly, Wang
et al. (2003) reported a thickness of 3.3 μm. Moreover, King-Smith et al. (2004) found
estimates of 3 μm to be consistent with the available evidence.

There have been numerous theoretical studies of Newtonian tear film relaxation on
a stationary domain (Wong, Fatt & Radke 1996; Sharma et al. 1998; Braun & Fitt
2003). The stationary domain has always been a single line running from the upper
lid to the lower lid along the centre of the cornea. The behaviour of the aqueous
layer is considered in the presence of the surface tension, viscous effects, gravity and
evaporation as well as boundary conditions imposed by the mucus and the lipid layer.
In particular, Wong et al. (1996) posited a constant curvature meniscus and developed
a coating model that relates the initial deposited film thickness to the tear viscosity,
surface tension, meniscus radius and upper lid velocity. Creech et al. (1998) used the
formula yielded from the coating model of Wong et al. (1996) to compute tear film
thicknesses from experimental lower meniscus curvature measurements. We note that
measurements of the cross-sectional radius of curvature in the lower meniscus taken
after a blink by Johnson & Murphy (2006) were found to increase with time and
vary in space. Tear film relaxation and breakup for a power-law fluid in one space
dimension was studied by Gorla & Gorla (2004).

One-dimensional studies with a moving end representing the upper lid have
appeared in recent years. The formation of the tear film was first treated theoretically
by Wong et al. (1996). More recently, Jones et al. (2005) gave a unified treatment of
the formation and subsequent relaxation of the tear film in single equation models in
the limits of a strong surfactant or no surfactant. They demonstrated that the flow
from underneath the upper lid was needed to generate a sufficiently uniform tear film
to cover the cornea in their models, as was suggested by the analysis of King-Smith
et al. (2004). Jones et al. (2006) studied the formation and relaxation of the tear film
in a model with a mobile film surface and insoluble surfactant transport. Among
other findings, they were able to quantitatively match experimentally observed speed
of upward drift in the tear film following a blink (Berger & Corrsin 1974; Owens &
Phillips 2001). Braun & King-Smith (2007) and Heryudono et al. (2007) computed
solutions for complete blink cycles, including the closing phase, for models using
sinusoidal and realistic lid motion, respectively. In both cases, they made quantitative
comparison with in vivo measurements of tear film thickness following a partial
blink; good agreement was found between theory and experiment by Heryudono
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et al. (2007). Tear film formation and relaxation with reflex tearing was treated by
Maki et al. (2008), and comparison with in vivo measurements at the centre of the
cornea were favourable. Tear film formation and relaxation was studied in a model
with an Ellis fluid approximating the tear film and a tangential-stress-free film surface
by Jossic et al. (2009).

To our knowledge, the first computations of flow in the tear film in a stationary
two-dimensional eye-shaped domain were carried out by Maki et al. (2010). They
solved a lubrication model for a Newtonian fluid on an eye-shaped domain obtained
from a digital photo of an eye subject to specified film thickness and pressure around
the boundary. This model explored the consequences of specifying the film curvature
(proportional to pressure) as in Wong et al. (1996). Maki et al. (2010) found that
if the boundary pressure was ‘frozen’ for all time in the simulation, then a strong
pressure difference was preserved throughout the computation, leading to a steepening
of the pressure field inside the film as time increased. The resulting two-dimensional
structure is a generalization of observed steepening in one dimension found by
Bertozzi et al. (1994) as well as in tear film models (e.g. Braun & Fitt 2003). This
kind of pressure boundary condition also preserved strong low-pressure regions in
the canthi (the ‘corners’ of the eye), which enhanced the tendency of the canthi to
draw fluid into the large curvature area. If the pressure is relaxed to a constant
value around the boundary, then the flow along the boundary was rapidly reduced
by comparison. In either case, there is flow out of the domain along the boundary
when specifying a pressure boundary condition together with an increased boundary
thickness corresponding to the meniscus. The results were sensitive to gravity due
to the amount of fluid in the menisci and canthi, but the gravitationally influenced
dynamics took longer to develop than a typical interblink period.

In this paper, we specify the amount of tear fluid entering and leaving the domain
via the normal component of the flux rather than specifying the pressure. Flux
boundary conditions are in some ways a more natural choice for studying tear film
dynamics. Theory and measurements for the drainage of tear fluid out the puncta
and through the canaliculi are available (e.g. Zhu & Chauhan 2005 and references
therein). For the influx of tear fluid from the lacrimal gland, some estimates have
appeared in the literature as well (Mishima et al. 1966). We believe that using this
boundary data is a step closer to realistic modelling of tear film dynamics. We use
an extension of the relaxation model of Braun & Fitt (2003) and other workers to a
stationary two-dimensional domain in order to explore the consequences of specifying
(i) the tear flux at the boundary, (ii) the eye-shaped geometry and (iii) gravitational
effects on the tear film thickness and tear fluid flow.

We are interested in understanding the flow of tear fluid between the upper and
lower menisci. Maurice (1973) describes the motion of lamp black in the menisci. Just
after a blink, the particles in the upper meniscus near the temporal canthus diverged
with some particles moving along the upper lid and some around the temporal
canthus and along the lower lid. In both cases, the particles travelled towards the
nasal canthus. More recently, Harrison et al. (2008) visualized the flow of the tear
fluid in vivo. In their experiments, a solution of fluorescein was introduced under
the temporal upper lid close to the temporal canthus; the lid was released and the
fluorescein was monitored. Within 3 s, a portion of fluorescein had moved rapidly
around the lower meniscus towards the nasal canthus. The remaining fluorescein
moved slowly in the upper meniscus towards the nasal canthus. After 35 s, the
fluorescein had only travelled over two-thirds of the upper meniscus. The tear flow
from the upper meniscus to the lower meniscus through the temporal canthus is
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referred to here as hydraulic connectivity. We shall see that in some cases our model
captures splitting of the flow in the upper meniscus and hydraulic connectivity.

Our evolution equation is solved numerically with an overset grid method on an
eye-shaped domain constructed from measured eyelid data. A number of successful
methods have been employed for thin film problems, including fully discrete methods,
finite differences (FD) in both space and time (e.g. Wong, Fatt & Radke 1996;
Oron & Bankoff 2001), FD methods in space with ordinary differential equation
(ODE) solvers in time (e.g. Braun & Fitt 2003; Braun & King-Smith 2007), spectral
methods with ODE solvers in time (e.g. Heryudono et al. 2007), FD in space with
alternating direction implicit (ADI) (e.g. Schwartz et al. 2001; Witelski & Bowen
2003; Greer, Bertozzi & Sapiro 2006), adaptive FD methods (e.g. Bertozzi et al. 1994;
Lee, Thompson & Gaskell 2007), positivity preserving schemes (e.g. Grün & Rumpf
2000; Zhornitskaya & Bertozzi 2000; Kondic & Diez 2001), finite element methods
(e.g. Grün & Rumpf 2000; Becker et al. 2002; Becker & Grün 2005) and publicly
available parabolic partial differential equation (PDE) solvers (e.g. Warner, Craster &
Matar 2002). Perhaps the closest to our needs of all of these methods is Greer et al.
(2006), which has general capability in stationary geometry. Given the challenges of
the eye-shaped geometry, i.e. the curved boundaries and canthi, we have chosen to
discretize the domain with overlapping grids: curvilinear boundary-fitted grids resolve
boundary regions and an underlying Cartesian grid approximates the solution away
from the boundaries. This overset grid method was used in our previous work with
pressure boundary conditions (Maki et al. 2010). An overlapping grid approach also
has the capability to manage time-dependent overlapping grids, and using this method
to compute the case of a blinking eye-shaped domain is a major goal of this ongoing
project. The Overture computational framework has built-in capabilities to handle
the complex moving domain efficiently, and therefore using this approach here moves
us closer to our goal.

We begin by formulating the problem in § 2. The details of the overset grid method
are explained in § 3. Finally, in § 4, we explore the effects of the eye-shaped geometry,
gravity, as well as different flux boundary conditions on the tear film dynamics.
Discussion and conclusions are given in § 5.

2. Formulation
Our model is an extension of the tear film relaxation model in one spatial dimension

developed by Braun & Fitt (2003). The tear film is assumed to be a thin film on a two-
dimensional eye-shaped geometry, shown in figure 1, approximating the boundary of
the eyelids from a digital photo. The eye surface is treated as flat because the radius
of curvature of the eye surface is much larger than the tear film thickness (Berger &
Corrsin 1974). In recent work, the flow of a thin film has been studied on a prolate
spheroid—a good approximation to the shape of the human cornea (Read et al.
2006)—where it was found that the ellipsoidal substrate did not have a significant
effect on the thinning rate near the centre of the cornea (Braun et al. 2010). We note
that flattening the exposed surface of the eye to a plane does underestimate the area
of the surface by about 30 % as discussed by Tiffany, Todd & Baker (1998).

The coordinate directions are (x ′, y ′, z′), with velocity components of the film
(u′, v′, w′). The tear film free surface is located at z′ = h′(x ′, y ′, t ′), where t ′ denotes
time and primed variables indicate dimensional quantities.

The aqueous tear fluid is assumed to be an incompressible Newtonian fluid governed
by the Navier–Stokes equations. The density ρ = 103kg m−3 and viscosity μ =10−3Pa s
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Non-dimensional scalings

L′ = 5 × 10−3 m x ′ and y ′ length scale
d ′ = 5 × 10−6 m z′ length scale

U ′ = 5 × 10−4 m s−1 velocity scale
L′/U ′ time scale

Table 1. The scaling used to non-dimensionalize the governing equations of motion.

Nasal canthus

Lower lid

Upper lid

g′

Temporal canthus

t′

z′, w′ x′, u′

y′, v′

n′

s = 0, s = L∂Ω

Figure 1. Coordinate system along with the domain for the tear film model.

are chosen to have numerical values matching pure water, because the aqueous layer
is primarily composed of water (Mishima 1965; Fatt & Weissman 1992). We note that
the tear fluid is shear thinning but our choice matches the high-shear rate asymptote
measured in the tear fluid (Tiffany 1991). We chose appropriate boundary conditions
to model the interactions of the aqueous layer with the corneal surface and the lipid
layer at the free surface. The corneal/aqueous interface is simplified to be a flat,
no-slip surface. At the aqueous/lipid interface, the lipid layer is assumed to render
the free surface tangentially immobile as first treated by Wong et al. (1996). (Although
we could derive this from the equations after Naire, Braun & Snow 2000 or Braun
& King-Smith 2007, we simply assume it here to save space.) The surface tension at
the tear/air interface is the constant value σ = 45 mN m−1 (Miller 1969; Nagyová &
Tiffany 1999).

2.1. Thin film equation

The full Navier–Stokes equations and boundary conditions described above
are simplified via lubrication theory, which exploits the difference between the
characteristic length scales in the tear film problem. In particular, the x ′ and y ′ length
scale is the half-width of the palpebral fissure L′ = 5 × 10−3 m and the z′ length scale
is the characteristic tear film thickness d ′ = 5 × 10−6 m . After non-dimensionalizing
the governing equations with the scales shown in table 1 and expanding the dependent
variables in a perturbation series in ε = d ′/L′, the leading-order approximations on
0 < z < h(x, y, t) and (x, y) ∈ Ω are

ux + vy + wz = 0, uzz − px = 0, vzz − py − G = 0 and pz = 0, (2.1)

where p represents pressure and

G =
ρgd ′2

μU ′ , (2.2)
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with g = 9.81 m s−2. As for the boundary conditions, on the surface of the eye z = 0
we have

u = v = w = 0. (2.3)

On the free surface z = h(x, y, t), we have the kinematic, normal stress and tangential
immobility conditions given by, respectively,

w = ht + uhx + vhy, −p = S∇2h and u = v = 0, (2.4)

where

S =
σε3

μU ′ . (2.5)

Note that ∇ = î∂/∂x + ĵ∂/∂y and ∇2 = ∂2/∂x2 + ∂2/∂y2. The above equations can be
combined into the single evolution equation of the form

ht + ∇ · Q = 0, (2.6)

with Q denoting the fluid flux. From lubrication theory, we find

Q = −h3

12
∇

(
−S∇2h + Gy

)
. (2.7)

For the tear film, S ≈ 10−5 is the ratio of surface tension to viscous forces and G ≈ 0.05
is the ratio of gravity to viscous forces. For computation, it will be convenient to
write (2.6) as a system:

ht + ∇ ·
[

−h3

12
∇ (p + Gy)

]
= 0, (2.8)

p + S∇2h = 0. (2.9)

2.2. Eye-shaped domain

The boundary is divided into four parts each parametrized by the Cartesian variable
for which it is single valued (the four regions are separated by dots in figure 1). The
upper and lower lids are second-degree polynomials whose coefficients are found by
a least squares fit to selected points along the eyelids from a digital photo of a fully
open left eye taken by us. Capture of points on the lid margin may be done manually
or via edge detection using, for example, the image processing toolbox in Matlab

(The MathWorks Inc.). The temporal and nasal curves are ninth-degree polynomials
that smoothly patch together the upper and lower lids. The coefficients are found by
matching the function value and the first four derivatives at each end point. Detailed
expressions for the domain we used are given in the Appendix.

2.3. Boundary conditions

We specify the tear film thickness and the normal component of the flux along the
boundary. The tear film thickness is assigned with the single thickness strategy on
the entire boundary, h|∂Ω = 13, which is in the upper end of the experimental range
for the TMW (Golding, Bruce & Mainstone 1997). It is unclear if this is the correct
modelling assumption for the nasal canthus because of the small, pink, globe-like
nodule (caruncula lachrymalis) located there; however, we assume that the tear film
is anchored at constant thickness all around the lid margins as a first step.

We still need another boundary condition, and we specify the flux normal to the
boundary. We assume that the flux has only spatial dependence in this work; this is a
drastic simplification of what occurs in vivo (Doane 1981), but we use this assumption
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Figure 2. The initial flux boundary condition Qlg (s) + Qp(s). The parameters are given in
table 2. Outside the punctal drainage and lacrimal supply areas, the flux is specified to be zero
at the boundary.

as a beginning. Let s denote the arclength of the eye-shaped boundary curve, where
s = 0 and s = L∂Ω correspond to the intersection of the top lid curve and the nasal
canthus curve (see figure 1). We study both no-flux and non-zero flux boundary
conditions. In the no-flux strategy, the outward normal boundary flux is simply

( Q · n) (s) = 0. (2.10)

In the non-zero flux case, the outward normal direction of the boundary flux is
given by

( Q · n) (s) = Qlg (s) + Qp(s), (2.11)

where Qlg (s) models the influx from the lacrimal gland and Qp(s) is associated with
puncta drainage. For the lacrimal gland, we use the following continuous piecewise
function

Qlg (s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if s < slg,on − �slg

−1

2
Q0lg

[
cos

(
π

2

s − slg,on

�slg

− π

2

)
+ 1

]
if |s − slg,on| � �slg

−Q0lg if slg,on + �slg � s � slg,off − �slg

−1

2
Q0lg

[
cos

(
π

2

s − slg,off

�slg

− π

2

)
+ 1

]
if |s − slg,off | � �slg

0 otherwise.

(2.12)
Note that Qlg (s), shown in figure 2, is negative because n is the outward normal
vector. Unless otherwise stated, the parameters are given in table 2, and the coefficient
Q0lg is chosen such that ∫ L∂Ω

0

|Qlg (s)| ds = QmT .

The parameter QmT is the non-dimensional steady supply from the lacrimal gland,
which is computed from the estimate of 1.2 μl min−1 from Mishima et al. (1966).
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Parameter Description Value

QmT Estimated steady supply from lacrimal gland 0.16
Q0p Height of punctal drainage peak QmT /(slg,off − slg,on)
Q0lg Height of lacrimal gland peak QmT /�sp

slg,on On-ramp location for lacrimal gland peak 4.2
slg,off Off-ramp location for lacrimal gland peak 4.6
�slg On-ramp and off-ramp width of lacrimal peak 0.2
pout Fraction of drainage from upper punctum 0.5
sp,lo Lower lid punctal drainage peak location 11.16
sp,up Upper lid punctal drainage peak location 11.73
�sp Punctal drainage peak width 0.05

Table 2. Values of the non-dimensional parameters introduced in (2.12) and (2.13). Unless
otherwise stated, these values were used in all simulations discussed in § 4.

On the other hand, the punctal drainage is given by

Qp(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if s < sp,lo − �sp

−Q0p

2
(1 − pout )

[
cos

(
π

s − sp,lo

�sp

− π

)
− 1

]
if |s − sp,lo| � �sp

0 if sp,lo + �sp � s � sp,up − �sp

−Q0p

2
(pout )

[
cos

(
π

s − sp,up

�sp

− π

)
− 1

]
if |s − sp,up| � �sp

0 otherwise.

(2.13)

The fluxes from punctal drainage are distributed between the lower and upper lids
by the parameter pout . Unless otherwise stated, the parameters are given in table 2,
and the coefficient Q0p is such that∫ L∂Ω

0

|Qp(s)| ds = QmT . (2.14)

Here we have chosen the drainage through the puncta to match the influx from the
lacrimal gland. The flux boundary condition is plotted in figure 2, where both the
supply and lacrimal drainage are localized to physiologically realistic locations.

2.4. Initial condition

The initial condition we use is

h(x, 0) ≡ g(x, y) = (h0 − 1) e− min(dist(x,∂Ω))/x0 +1, (2.15)

where x0 = 0.06 and dist(x, ∂Ω) denotes the distance between x and a point on the
boundary ∂Ω . For this choice, the initial tear film volume is 2.45 μl. Mishima et al.
(1966) estimated the exposed tear volume to be 4.0 μl, while Mathers & Daley (1996)
experimental measurements range from 2.23 ± 2.5 μl found by measuring fluorescein
concentration. We chose to make the initial condition match the estimated tear volume
found by Mathers & Daley (1996) in this paper. Ideally, we are interested in simulating
an initial condition constructed with x0 = 0.01 because the initial TMH falls in the
range of measured experimental values. Given the current strategy for assigning the
initial condition, it does not seem possible to satisfy both an experimental TMH value
and volume estimate. We note that Tiffany et al. (1998) computed that the exposed
area of the eye surface is 30 % larger than a two-dimensional projection such as in a
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Figure 3. The temporal corner of the composite overlapping grid of the eye-shaped domain.
The uppermost and lowermost grids follow the lower and upper lid margins, respectively, to
the nasal canthus. In the nasal canthus, there is a similar curvilinear boundary-fitted grid. A
uniform grid aligned with the coordinate axes is used away from the boundaries.

photograph. Using an approximately 30 % reduction in the volume from the interior
region of the tear film, which mimics the reduction in area, may help the situation
for computational models; since most tear volume is in the menisci, the improvement
may be limited. We will investigate this possibility in future work.

3. Numerical method
The numerical method as well as the composite grid is the same as described in

Maki et al. (2010) and the only new feature is the enforcement of the flux boundary
condition. The system (2.8) is solved using an implementation of the method of
lines. The spatial derivatives are approximated by curvilinear finite differences, which
results in a system of differential-algebraic equations (DAE), and an adaptive second-
order backward differentiation formula (BDF) time stepping method (after Brenan,
Campbell & Petzold 1989) is used to advance the solutions. The flux boundary
condition only specifies the flux in the normal direction and incorporating the flux
boundary condition into the discretized system required some care; details and the
results of numerical tests are given in the Appendix.

3.1. Overset grid method

The eye-shaped domain is discretized using composite overlapping grids. A composite
overlapping grid is a collection of component grids, each logically rectangular
curvilinear, covering a domain and overlapping where they meet. The solutions
on the different component grids are coupled via interpolation conditions. For our
problem, the composite overlapping grid is composed of boundary-fitting curvilinear
grids at the lid margins with a background Cartesian grid for the remaining area.
To construct the eye grid, we use the grid generation capabilities of the Overture

computational framework developed at Lawrence Livermore National Laboratory
(Chesshire & Henshaw 1990; Henshaw 2002). Figure 3 displays the grid in the
temporal canthus. Each boundary curve is defined by non-uniform rational B-spline



370 K. L. Maki, R. J. Braun, P. Ucciferro, W. D. Henshaw and P. E. King-Smith

hmin hmin

t G = 0 G = 0.05

0 1 1
1 0.7242 0.7696
2 0.5203 0.5997
5 0.3220 0.4434

15 0.1783 0.0639

Table 3. Minimum film thickness for no-flux boundary conditions at various times with and
without gravity active.

(NURBS; Piegl & Tiller 1997), and a boundary-fitting grid is produced by extending
the normals. Second-order accurate finite difference approximations to derivatives,
constructed in the mapped domain for each composite grid, are used to approximate
spatial derivatives at grid points. Additional detail is given in the Appendix.

4. Tear film dynamics
We give results for the no-flux condition, followed by results for the non-zero flux

condition. The former gives us a test case for conserving mass during the computation,
and a good contrast for understanding the supply and removal of tear fluid that occurs
in the second case.

4.1. No-flux boundary condition

The dynamics are first considered with G =0, and subsequently G =0.05. By
comparing the two different cases, we can better understand the influence of gravity
in the model. The absence of gravity could be interpreted as a subject being supine
or as gravity being negligible in the dynamics of the tear film (e.g. Wong et al. 1996;
Creech et al. 1998). However, we shall see that gravity influences the flow around the
lid margins in our model.

4.1.1. Capillarity only

Figure 4(a) shows the dynamics of the tear film contours. The dominant feature is
the capillarity-driven thinning of the film that creates the so-called black line adjacent
to the menisci. The black line is a thin region of tear fluid that fluoresces much less
than the rest of the tear film when fluorescein dye is added to the tear film in the
presence of a blue light source. In the computation, the black line forms rapidly and
emerges as a dark blue band in figure 4. The feature driving the thinning is the highly
curved menisci. The tear fluid near the menisci is sucked into the menisci, because the
large thickness at the boundary creates a positive curvature in the film surface and
hence a low pressure. The low-pressure regions near the boundary are shown at two
different times in figure 5. The global minimum develops at the intersection of the
black lines in the nasal canthus. In general, the thinning dynamics slow down as time
increases as shown in the minimum tear film thickness values. The global minimum
for the thickness occurs near the nasal canthus and those values for several times are
given in table 3.

The black line separates the tear fluid in the menisci and the interior. A ridge forms
in the interior (the light turquoise band in figure 4), which is not as pronounced as in
the pressure boundary cases (Maki et al. 2010). At the intersection of the ridges in
the canthi regions are the local maxima. As time evolves, the inward movement of
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G = 0.05G = 0

min (h(x, y, 1.0)) = 0.7696min (h(x, y, 1.0)) = 0.7242

min (h(x, y, 2.0)) = 0.5997min (h(x, y, 2.0)) = 0.5203

min (h(x, y, 5.0)) = 0.4434min (h(x, y, 5.0)) = 0.3220

0

(a) (b)

3.0

min (h(x, y, 15.0)) = 0.0639min (h(x, y, 15.0)) = 0.1783

Figure 4. A time sequence of the contour plots of the tear film thickness, with the no-flux
boundary condition. Note that the maroon regions indicate tear film thickness greater than or
equal to 3.

the light turquoise region illustrates the slow spreading of the ridge away from the
black line.

Figure 5 shows the behaviour of the pressure. The lower pressure in the menisci
remains throughout the simulation. The low-pressure menisci themselves evolve
towards a constant-valued pressure configuration. With only the normal pressure
gradient being constrained by the flux boundary condition, the value and shape of
the pressure in the menisci changes with time. The pressure is elevated in the interior
and separated from the low-pressure menisci. These rapid pressure changes follow
the boundary and intersect near the canthi. But, the severity of the rapid change
lessens with increasing time and becomes smoother. In the interior, the elevated
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Figure 5. A time sequence of the pressure with G = 0 and the no-flux boundary condition.
The coloured surface is the pressure and the curve beneath the pressure surface is the edge
of the domain shown for reference. Note that the direction of view is from the location of
the lacrimal gland so that the temporal canthus is on the left and the nasal canthus is on the
right.

pressure distribution in the canthi regions, if viewed normal to the surface of the eye,
resembles a wedge with smoothed corners.

We use the error in volume conservation as an indicator of the numerical accuracy
of the computed solution (though it is not a bound; see Maki et al. 2008). The volume
at time t is given by

V (t) =

∫
Ω

h(x, y, t) dA, (4.1)

and the error in volume conservation is EV (t) = |V (t)−V (0)|, where V (0) is the initial
volume with non-dimensional value of 14.44. The error is at most EV (10) = 0.05,
corresponding to 0.35 % of the initial non-dimensional tear volume.

To examine the hydraulic connectivity in our model, we display the flux of the tear
fluid during the interblink period in figures 6 and 7. The flux direction field is plotted
over the contours of the norm of flux, where the grey scale is such that dark regions
indicate a small flux and white corresponds to || Q|| � 10−2. We note that in all flux
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Figure 6. The flux direction field plotted over the contours of the norm of the flux at t = 1.
The boundary condition is no-flux and G =0. In the upper and lower menisci, the location of
the switch in the direction of flow is in the dark region.

figures, the amount and distribution of the arrows does not reflect properties of the
computational grid (there are far fewer arrows than grid points for clarity). The flux
magnitude in the menisci and canthi regions is greater than or equal to the interior
flux. In general, the menisci and canthi regions contain more tear fluid allowing for
more mobility. As time increases, the tear fluid collects in the canthi regions, thus
causing the maroon band in the nasal canthus in figure 4 to widen.

The tear fluid flows along the boundary towards the lower-pressure canthi regions
and nowhere through it because of the no-flux condition. Note that the interior flux
vectors near the upper lid in figure 6 that point outward are not boundary vectors.
In the interior, the top of the ridge separates the fluid flow into and out of the
interior. Although the tear fluid does collect in the canthi regions, the tear fluid does
not travel from the upper meniscus into the lower meniscus as in the experiments
of Harrison et al. (2008), and therefore, we conclude that this simulation does not
capture hydraulic connectivity.
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Figure 7. The flux direction field plotted over the contours of the norm of the flux at t = 10.
The boundary condition is no-flux and G =0. The flux stagnates in regions where the boundary
has local maxima in its curvature.

To better understand how tear fluid is redistributed from the menisci to the canthi,
we first note that in an equilibrium meniscus shape the pressure (or curvature in our
thin film approximation) is constant. In general, the tear film in the menisci evolves
towards such an equilibrium shape. Therefore, consider the tear film thickness at the
fixed grid point xi ,j where dist(x, ∂Ω) = ε and ε > 0. Suppose that the equilibrium
shape of the meniscus is such that ∇2h =C, where C is a constant, and consider the
dependence of hi ,j on the curvature of ∂Ω . Recall that we can interpret ∇2h as

∇2h(x0, y0, t0) ≈ average value of h in the neighbourhood of (x0, y0) (4.2)

− h(x0, y0, t0).

If the nasal canthus boundary curve is ∂Ω2 as in figure 8, then we have
hi,j+1 = hi,j−1 = hi−1,j = h0 because of the thickness boundary condition. Moreover,
if we let (hi,j−1 + hi,j+1 + hi−1,j )/3 approximate the average value of h in the
neighbourhood, then by (4.2),

C ≈ h0 − hi ,j . (4.3)



Tear film dynamics on an eye-shaped domain 375

hi–1, j ∂Ω2
hi, j–1

hi, j

hi, j+1

∂Ω1

Figure 8. An example of the nasal canthus boundary curve with different curvatures.

On the other hand, if the nasal boundary curve is ∂Ω1, then hi−1,j = h0, hi,j−1 = h0 −ε1

and hi,j+1 = h0 − ε2, where ε1 > 0 and ε2 > 0, then

C ≈ h0 − ε1/3 − ε2/3 − hi ,j . (4.4)

Therefore, to achieve an equilibrium shape with curvature C, the thickness a fixed
distance ε away from a higher-curvature boundary must be larger (via (4.3)) than the
thickness a fixed distance ε away from a smaller-curvature boundary (via (4.4)).

4.1.2. Capillarity and gravity

The presence of gravity redistributes the tear film from the top (near the upper lid)
to the bottom. The global behaviour of the redistribution is clearly shown in figure 4,
where a time sequence of the tear film thickness contours are plotted for G =0
(figure 4a) and G = 0.05 (figure 4b). The black line is still created at early times,
but now the black lines near the upper and lower menisci have different minimum
thicknesses. Near the upper meniscus, there is a competition between capillarity,
which draws fluid into the meniscus, and gravity, which pulls fluid down the surface
of the eye. However, near the lower meniscus, gravity accelerates the formation of the
black line because it cooperates with capillarity there. At t = 1 (figure 4b) near the
upper meniscus, the absence of the blue band illustrates the competition, whereas the
presence of the dark blue band near the lower meniscus illustrates the acceleration
when compared to figure 4(a).

Because no tear fluid can exit the domain, the tear fluid flows from the upper
meniscus into the lower meniscus and accumulates in the centre of the lower meniscus.
As a result, the upper TMH decreases and the lower TMH increases. The opposite
occurred in the pressure boundary condition case (Maki et al. 2010). The inward
spreading of the interior ridge near the upper lid is accelerated by gravity and
hindered near the lower lid.

The dynamics of the pressure distribution are shown in figure 9. The distributions
include the elevated pressure region remaining separated from the low-pressure
menisci and the pressure distributions in the menisci changing with time. The pressure
distribution in the meniscus appears to be linear in y which indicates a hydrostatic
component of the pressure.

Including the effect of gravity promotes hydraulic connectivity in the no-flux model
(see figure 10). In particular, gravity accelerates the tear flow in the upper meniscus
towards the canthi regions and removes the previous dark or slower region at the
tear flow split (in the middle of the upper and lower lids). Gravitational acceleration
causes the upper TMH to decrease with time (see figure 4). When gravity is active,
the tear fluid no longer collects in the canthi regions, but rather flows into the lower
meniscus where the direction of the tear flow is such that the tear fluid collects in the
centre of the lower meniscus. In the interior, the flux always points downward.
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Figure 9. A time sequence of the tear film pressure with G =0.05 and the no-flux case. Note
the sharpening separation between the high-pressure centre and low-pressure meniscus with
increasing time. The viewpoint is from the direction of the lacrimal gland (from the superior
and temporal direction).

4.2. Non-zero flux boundary condition

4.2.1. Capillarity only

In this section, we explore the effects of the non-zero flux boundary condition
plotted in figure 2 with G = 0. Consider the dynamics of the tear film thickness
contours plotted in figure 11(a). At t = 1, the contour plots of the thickness with
non-zero flux (see figure 11) and no-flux (see figure 4) look nearly identical. Because
of the presence of the menisci, the meniscus-driven thinning creates the black line
with the minimum again occurring in the nasal canthus region. In the non-zero flux
case, the minimum is smaller than that in the no-flux case.

As time increases, the influence of the flux boundary condition becomes increasingly
apparent in the menisci and canthi regions. The upper TMH (e.g. the width of the
maroon band) around the influx slowly lengthens and begins to bulge through the
black line. In contrast, in the nasal canthus around the punctal drainage, the TMH
steadily decreases. The black line is persistent throughout the calculation, but its
minimum thickness is smaller in the nasal canthus (see the dark blue region), and its
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Figure 10. The flux direction field plotted over the contours of the norm of the flux at t = 10.
The boundary condition is no-flux and G =0.05. The flow separates at the top, flows around
the canthi and collects at the centre of the bottom lid.

minimum thickness is larger in the upper meniscus near the lacrimal influx (e.g. the
lighter blue region). It is difficult for the lacrimal gland influx to break through the
black line region in this relatively short simulation.

In the interior, the overall dynamics are similar to the no-flux case. An interior
ridge forms and at the intersection relative maxima form in the canthi regions.
Again, as time increases, the inward growth of the light turquoise band illustrates the
slow spreading of the ridge away from the black line. We note that the volume is
conserved because the lacrimal gland influxes match the punctal drainage. The error
in volume conservation for the non-zero flux case is at most 0.69 % of the initial
non-dimensional tear volume during the simulation.

Figure 12 shows the dynamics of the pressure distribution. As before, the lower
pressure in the menisci remains throughout the simulation. Now, however, the
difference between the elevated-pressure interior and low-pressure meniscus drastically
changes with increasing time. In particular, near the lacrimal gland influx, the
separation decreases as the meniscus bulges with excess tear fluid and the curvature
decreases. On the other hand, near the puncta, the separation increases severely as
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G = 0.05G = 0

min (h(x, y, 1)) = 0.6315min (h(x, y, 1)) = 0.6021

min (h(x, y, 2)) = 0.4027min (h(x, y, 2)) = 0.3730

min (h(x, y, 5)) = 0.2119min (h(x, y, 5)) = 0.1718

0

(a) (b)

3.0

min (h(x, y,10)) = 0.0976min (h(x, y,10)) = 0.0557

Figure 11. A time sequence of the contour plots of the tear film thickness, with the non-zero
flux boundary condition and G =0 (a) or G =0.05 (b), illustrating the global behaviour. Note
that the maroon regions indicate tear film thickness greater than or equal to 3.

the meniscus loses tear fluid and the curvature increases. The development of the
sharp separation in the nasal canthus limits the time for which we can compute
solutions. Similar to the pressure boundary condition cases in Maki et al. (2010), the
intersection of the rapid pressure changes near the nasal canthus, and if viewed from
above resembles a wedge.

The dynamics of the tear film thickness and pressure along x = 0 are plotted in
figure 13. The pressure distribution changes rapidly from p ≈ 0 in the interior to a
negative value near the boundary. In the non-zero flux case, the negative boundary
pressure now increases with increasing time at this position. This allows for the
slope of the rapid change in pressure distribution near the boundary to decrease in
magnitude with increased time. In contrast, for the pressure boundary condition case,
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Figure 12. A time sequence of the pressure with G =0 and the non-zero flux boundary
condition. Note the development of the wedge in the nasal canthus region and the sharper
separation between the elevated and low-pressure meniscus.

the pressure near the boundary evolved to a nearly vertical slope at this location
(Maki et al. 2010); in the non-zero flux case in this section, such steepening occurs
near the nasal canthus.

Figures 14 and 15 display the direction of the flux over the contour plot of the norm
of the flux at t = 1 and t = 10. The first observation is that the overall interior flux
dynamics, away from the menisci and canthi regions, are the same for the no-flux and
non-zero flux cases. However, the tear flow in the menisci and canthi regions changes
dramatically from the no-flux to the non-zero flux case. The effects of lacrimal gland
influx and the punctal drainage are now clearly visible as there is flow through the
boundary.

The lacrimal gland influx splits with some tear fluid travelling through the upper
meniscus and some travelling around the temporal canthus and into the lower
meniscus. At t =1, the effects of the boundary fluxes are not felt everywhere. The tear
flow in the upper and lower menisci away from the fluxes behaves like the no-flux
case. That is, the direction of the tear flow in the dark region at the top of the
upper meniscus splits so that some tear fluid travels towards the nasal canthus and
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Figure 13. A time sequence of the tear film thickness (a) and pressure (b) along x = 0 with
G = 0 and the non-zero flux boundary condition.

some travels towards the temporal canthus. By t =10, the tear flow everywhere in
the lower meniscus points towards the lower punctum, and in the upper meniscus,
the tear fluid to the nasal side of the split flows towards the upper punctum. Thus,
it takes around 10 s for the lacrimal gland influx to change the tear flow pattern in
both menisci favouring travel through the menisci toward the puncta. This time scale
appears to be slower than the description of Maurice (1973), but it is not at odds
with the observations of Harrison et al. (2008). We conclude that the non-zero flux
case captures some of the aspects of hydraulic connectivity.

4.2.2. Capillarity and gravity

In the non-zero flux case, gravity again redistributes the tear fluid from top to
bottom (see figure 11). We observe similar dynamics as for the no-flux case in the
interior; gravity pulls the ridge across the eye. For the previous case with G =0 and
non-zero flux, recall that away from the lacrimal gland influx in the upper meniscus,
the tear flow behaved like the no-flux case (see figure 14). That is, the direction of
the tear flow in the dark regions at the top and bottom split so that some tear fluid
travelled towards the nasal canthus and some travelled towards the temporal canthus.
Here gravity accelerates the no-flux behaviour. In particular, the change of direction
located in the dark region at the top (the upper meniscus shown in figure 14) is now
coloured white (large flux magnitude) with the tear flow still splitting and travelling
towards both canthi (see figure 16). The acceleration of the no-flux boundary effects
causes the upper TMH to decrease away from the lacrimal gland influx.
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Figure 14. The flux direction field, with the non-zero flux boundary condition and G = 0,
plotted over the contours of the norm of the flux at t =1. Note that the direction of tear flow
in the lower meniscus is not always towards the lower punctum.

Near the lacrimal gland influx, gravity pulls the bulge in the upper meniscus down
the surface of the eye. As time increases, the bulge of the tear film begins to penetrate
the black line region as in the one-dimensional reflex tearing study of Maki et al.
(2008). Because of gravitational effects, the lacrimal gland influx no longer splits and
travels through both menisci. As shown in figures 16 and 17, the lacrimal gland influx
travels only through the temporal canthus and into the lower meniscus with gravity
accelerating the flow of the lacrimal gland influx into the lower meniscus. The excess
tear fluid accumulates and increases the lower TMH. A comparison of the lower
meniscus in figures 14 and 16 reveals that gravity speeds up the transition of the tear
flow pattern into one that favours travel through the meniscus and out the lower
punctum.

This simplified model with the non-zero flux boundary case condition and gravity
captures some aspects of hydraulic connectivity. What is missing is the flow towards
the upper punctum in the upper meniscus. If we attempt to reproduce the experiment
of Harrison et al. (2008) and trace the tear flow based on the flux plots, then all the
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Figure 15. The flux direction field, with the non-zero flux boundary condition and G = 0,
plotted over the contours of the norm of the flux at t = 10.

tear film would be channelled into the lower meniscus through the temporal canthus
and none would travel around the upper meniscus in this case.

In an attempt to recover the splitting of lacrimal gland influx, we shifted the
lacrimal gland inlet towards the nasal canthus (Maki 2009, results not shown). The
parameters in Qlg (s) associated with the location of the on-ramp change to slg,on = 3.8,
and the location of the off-ramp is slg,off =4.2. In the upper meniscus, gravity’s pull
continued to overcome the lacrimal gland influx and erase the splitting effect there.
The change in the lacrimal gland inlet did shift the upper meniscus split towards the
temporal canthus, and therefore, closer to the lacrimal gland influx. In the unshifted
flux case, the split in the upper meniscus tear flow occurred at x =0.7062 (figure 17),
whereas now the split occurs at x = 1.0397. The latter split is still away from the
lacrimal gland inlet which lies in the interval 1.26 � x � 1.99.

5. Discussion
The relaxation model of the tear film on an eye-shaped domain was numerically

simulated with tear film thickness and flux boundary conditions. In the Overture
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Figure 16. The flux direction field plotted over the contours of the norm of the flux at t = 1.
The boundary condition is non-zero flux and G = 0.05.

computational framework, we implemented the overset grid method detailed by Maki
et al. (2010) with modification to enforce the flux boundary condition as detailed in
the Appendix (see also Maki 2009). We explored the effects of the geometry of the
eye-shaped domain, gravity and boundary fluxes on the dynamics of the tear film
thickness and the tear fluid flow.

In all of the computations reported here, we found recurring dynamics due to the
consistent presence of the menisci coupled to the same thickness boundary condition.
In particular, the formulation of the black line is persistent. Stronger capillary action
in the vicinities of the nasal and temporal canthi regions produced local minima at
the intersection of the black lines. In the dynamics of the pressure, the low-pressure
menisci remained throughout each simulation.

We found that the different flux boundary conditions significantly influence the
behaviour in the menisci and canthi regions. In general, the upper meniscus around
the lacrimal gland influx contained more tear fluid, whereas in the nasal canthus
near the punctal drainage, the meniscus contained less fluid. The excess tear fluid
found near the lacrimal gland influx decreases the curvature, and therefore, increases
the pressure. In a similar manner, the lack of tear fluid near the puncta increases
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Figure 17. The flux direction field plotted over the contours of the norm of the flux at
t = 10. The boundary condition is non-zero flux and G = 0.05.

the curvature causing the pressure to decrease. Near the puncta, the decrease in
pressure continues with increasing time, eventually producing a sharp separation in
the pressure that can no longer be accurately approximated by our approach (see
figure 12). The sharp separation in the pressure develops faster in the non-zero flux
boundary condition case stopping the calculation earlier than in previously computed
pressure boundary condition cases (Maki et al. 2010). This behaviour agrees with
some expected behaviour of pressure versus flux boundary conditions as discussed
by Bertozzi et al. (1994). In particular, they found that for a specific flux boundary
condition, referred to as the current boundary condition, a finite time singularity
always occurs; on the other hand, for a specific pressure boundary condition, a
singularity always forms either in finite or infinite time. An improved boundary
condition, which would be closer to in vivo behaviour, would only have punctal
drainage for a short time and thus avoid the singular pressure behaviour.

In all cases, gravity was found to redistribute the tear film from top to bottom.
In particular, gravity accelerated the tear fluid flow in the upper meniscus through
the canthi regions and into the lower meniscus resulting in thinner upper TMHs and
thicker lower TMHs. In the interior, the spreading of the upper ridge is accelerated,
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while the spreading of the lower ridge is hindered. With the non-zero flux boundary
case, the upper meniscus bulge is drained down the surface of the eye and begins to
penetrate the black line region.

The direction of the tear flow was found to be affected by both the flux boundary
condition and gravity. With capillarity only, the tear fluid in no-flux boundary case
flowed into the canthi regions and collected there. On the other hand, the non-
zero flux case at later time exhibited hydraulic connectivity, with the lacrimal gland
influx splitting and then travelling both through the upper meniscus into the upper
punctum and through the lower meniscus into the lower punctum. With gravity active,
hydraulic connectivity was promoted in the no-flux boundary case, with the tear fluid
in the upper meniscus travelling through the canthi regions and collected in the lower
meniscus. In the non-zero flux case, gravity erases the splitting of the lacrimal gland
influx.

In conclusion, we found the overall tear flow to be controlled by the menisci on the
eye-shaped geometry and the flux boundary condition. The different flux boundary
conditions affected only the tear film dynamics in the menisci and canthi regions,
which are regions where tear film thickness and velocity are typically not measured in
experiments. As may be expected, gravity was found to promote flow from the upper
meniscus through the canthus and into the lower meniscus.

We have only begun to study all the possible flux boundary configurations modelling
the complicated tear film drainage and supply. A natural step forward is to include
time-dependent flux boundary conditions and to study the effect of moving boundaries
during a blink.

This material is based upon work supported by the National Science Foundation
under grant 0616483. R. J. B. thanks M. Doane for helpful conversations.

Appendix
A.1. Boundary curves

Each of the four boundary curves, separated by dots in figure 1, are parameterized
by the Cartesian variable for which they are single valued. In particular, the upper
lid is described by y = bU (x) for −2.2 � x � 2.5, where

bU (x) = −0.13x2 + 0.03x + 1.06. (A 1)

The lower lid is described by y = bL(x) for −2.2 � x � 2.5, where

bL(x) = 0.05x2 + 0.03x − 0.45. (A 2)

On the other hand, the temporal canthus is given by x = bT (y) for −0.0725 � y �
0.3225, with

bT (y) = −101240.64y9 + 121085.52y8 − 43801.57y7 + 389.73y6

+ 2281.97y5 − 52.09y4 − 72.00y3 − 10.13y2 + 2.90y + 2.74. (A 3)

The nasal canthus is described by x = bN (y) for −0.2840 � y � 0.3648, where

bN (y) = 2660.66y9 − 1131.49y8 − 1272.19y7 + 519.29y6

+ 248.43y5 − 90.88y4 − 30.58y3 + 12.99y2 + 1.17y − 2.94. (A 4)
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A.2. Overset grid method

The evolution equation is solved using a curvilinear finite-difference-based method
of lines on the composite overlapping grid described above. We use the Overture

computational framework to generate the curvilinear finite difference approximations.
In particular, each component grid is defined by a mapping (x(r, s), y(r, s)) = G(r, s)
from the unit square (r, s) ∈ [0, 1]2. Approximations to the derivatives of h(x, y, t)
with respect to the (x, y) are formed on the unit square (r, s) by application of the
chain rule

hx = rxh̃r + sxh̃s, (A 5)

hy = ryh̃r + syh̃s, (A 6)

∇2h =
(
r2
x + r2

y

)
h̃rr + 2(rxsx + rysy)h̃rs +

(
s2
x + s2

y

)
h̃ss + ∇2rh̃r + ∇2sh̃s, (A 7)

where h̃(r, s, t) = h(x(r, s), y(r, s), t) and rx , ry , rxx , ryy , sx , sy , sxx and syy are
inverse vertex derivatives computed from the mapping G. The curvilinear grid finite
differences are obtained by discretizing the (r, s) derivatives in (A 5)–(A 7) by centred
second-order finite differences.

The time-stepping algorithm we used is a variable stepsize fixed leading coefficient
implementation of the second-order backward differentiation formula. In a variable
stepsize method, the general idea is to take the largest time step possible while
still keeping local control over the estimated error. This fixed leading coefficient
implementation was used in DASSL as described by Brenan et al. (1989).

A.3. Enforcing the flux boundary condition

In the current formulation (2.8), to enforce the normal component of the flux along
the boundary we must enforce a Neumann boundary condition on the pressure.
We developed new boundary condition operators in the Overture computational
framework for use with our model, a system that is fourth order in space. To
understand the method, we consider the simplified one-dimensional model problem
with exact solution hE(x, t) and pE(x, t), which generate forcing function gE such that

ht − pxx = gE(hE(x, t), pE(x, t)), (A 8)

p + Shxx = 0, (A 9)

on −1 <x < 1, with Dirichlet boundary conditions for h and Neumann for p. We
consider the single uniform computational grid with spacing �x = 1/N and two
ghost points. Let xj = −1+ j�x, for j = −1, . . . , N +1, denote the grid points, where
hj (t) = h(xj , t), pj (t) = p(xj , t) and gE,j (t) = g(xj , t).

We need an extra equation at each boundary, depending on the pressure evaluated
at the ghost point to properly approximate the problem. From (A 8) and the Dirichlet
boundary condition, we obtain

−pxx = gE(hE(−1, t), pE(−1, t)) − ∂h0

∂t
(t) at x = −1. (A 10)
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el
1 el

2 el
3 el

1/el
2 el

2/e
l
3

l = h 0.134 0.063 0.031 2.127 2.429
l = p 0.051 0.021 0.008 2.032 2.625

Table 4. When solving the linear model problem coupled with thickness and flux boundary
conditions, the maximum absolute error of h and p at t = 1 with S =10−2.

When discretized, we obtain the first equation below, and the second is the discrete
form of the Neumann boundary condition, viz.

−p−1 − 2p0 + p1

(�x)2
= gE,0 − ∂h0

∂t
(t), (A 11)

p1(t) − p−1(t)

2�x
= −S

∂3hE

∂x3
(−1, t). (A 12)

If we do the same at the other boundary and run a numerical experiment, then the
maximum of the absolute error at t = 0.1 is 1.8 × 10−12. In all the computations in
this paper, we enforce the normal flux boundary condition using this approach.

A.4. Numerical grid study

The numerical scheme described above is verified on the tear film relaxation model
by a method of analytical functions. The true solution is chosen to be

hE(x, y, t) = cos(2πx) cos(2πy) cos(2πt) + 2, (A 13)

pE(x, y, t) = 8π2S cos(2πx) cos(2πy) cos(2πt), (A 14)

where S is a non-dimensional parameter. Three composite grids, Gm with m =1, 2, 3,
are used to discretize the domain comprising a rectangle with a circular hole cut out,
and the grid spacing is such that (�x1 : �x2 : �x3) = (2 :

√
2 : 1), approximately.

First, we consider the corresponding linear model system

ht − ∇ · (∇p) = fE (hE(x, y, t), pE(x, y, t)) , (A 15)

p + S∇2h = 0, (A 16)

where S = 10−2, coupled with thickness and flux boundary conditions. If hm and pm

represent the discrete solution to (A 15) on composite grid Gm at t = 1, then the
maximum absolute error is defined to be

eh
m = ||hm − hE ||∞ and ep

m = ||pm − pE ||∞. (A 17)

If the overall spatial accuracy of our numerical approximations is second order, then
the ratios el

i/e
l
i+1 should approach 2. Table 4 verifies the second-order spatial accuracy

for this linear model problem.
Moving to the nonlinear tear film system with a forcing term such that the true

solutions (A 13) and (A 14) satisfy the problem, we find that if S = 10−2, then the error
continues to grow throughout the simulation and contaminates the discrete solution.
However, when S = 10−3, the maximum absolute error shown in table 5 behaves
similar to the linear model problem.

Finally, we test the eye-shaped composite grid shown in figure 3. Using the true
solutions (A 13) and (A 14), we integrate the forced nonlinear tear film system to t =1
with S = 10−5. The maximum absolute errors are eh =5.19 × 10−3 and ep =9.30 × 10−4.
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el
1 el

2 el
3 el

1/el
2 el

2/e
l
3

l = h 0.223 0.115 0.054 1.940 2.130
l = p 0.017 0.007 0.004 2.429 1.75

Table 5. Maximum absolute error for nonlinear tear film problem of h and p at t = 1 with
S = 10−3.
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